課程名稱 |
(中文) 複變數論 (英文) Complex Variables |
開課單位 | 電機工程學系 | ||
課程代碼 | E2080 | ||||
授課教師 | 江江盛 | ||||
學分數 | 3.0 | 必/選修 | 選修 | 開課年級 | 大二 |
先修科目或先備能力:微積分,工程數學 | |||||
課程概述與目標: 此課程提供給學習者,結合微積分及複數的特性,推導出一套運算的數學工具,可以有效的解決一些工程上的演算問題。 | |||||
教科書 | J. W. Brown & R. V. Churchill (2003), "Complex Variables and Applications," McGraw-Hill International Editions. | ||||
參考教材 |
課程大綱 | 學生學習目標 | 單元學習活動 | 學習成效評量 | 備註 | ||
週 | 單元主題 | 內容綱要 | ||||
1 | COMPLEX NUMBERS | 1. Sum and Product 2. Exponential Form |
1. Sum and Product 2. Exponential Form |
|||
2 | ANALYTIC FUNCTIONS | 1. Functions of a Complex Variable 2. Limits; Cauchy-Riemann Equations |
1. Functions of a Complex Variable 2. Limits; Cauchy-Riemann Equations |
|
||
3 | ANALYTIC FUNCTIONS | 1. Functions of a Complex Variable 2. Limits; Cauchy-Riemann Equations |
1. Functions of a Complex Variable 2. Limits; Cauchy-Riemann Equations |
|
||
4 | ANALYTIC FUNCTIONS | 1. Functions of a Complex Variable 2. Limits; Cauchy-Riemann Equations |
1. Functions of a Complex Variable 2. Limits; Cauchy-Riemann Equations |
|
||
5 | ELEMENTARY FUNCTIONS | 1. Some Identities Involving Logarithms 2. Inverse Trigonometric Functions |
1. Some Identities Involving Logarithms 2. Inverse Trigonometric Functions |
|
||
6 | ELEMENTARY FUNCTIONS | 1. Some Identities Involving Logarithms 2. Inverse Trigonometric Functions |
1. Some Identities Involving Logarithms 2. Inverse Trigonometric Functions |
|
||
7 | ELEMENTARY FUNCTIONS | 1. Some Identities Involving Logarithms 2. Inverse Trigonometric Functions |
1. Some Identities Involving Logarithms 2. Inverse Trigonometric Functions |
|
||
8 | INTEGRALS | 1. Contour Integrals 2. Cauchy-Goursat Theorem 3. Cauchy Integral Formula |
1. Contour Integrals 2. Cauchy-Goursat Theorem 3. Cauchy Integral Formula |
|
||
9 | 期中考 | 期中考 | 期中考 |
|
||
10 | INTEGRALS | 1. Contour Integrals 2. Cauchy-Goursat Theorem 3. Cauchy Integral Formula |
1. Contour Integrals 2. Cauchy-Goursat Theorem 3. Cauchy Integral Formula |
|||
11 | INTEGRALS | 1. Contour Integrals 2. Cauchy-Goursat Theorem 3. Cauchy Integral Formula |
1. Contour Integrals 2. Cauchy-Goursat Theorem 3. Cauchy Integral Formula |
|
||
12 | SERIES | 1. Convergence of Sequences and Series 2. Laurent Series 3. Multiplication and Division of power series |
1. Convergence of Sequences and Series 2. Laurent Series 3. Multiplication and Division of power series |
|
||
13 | SERIES | 1. Convergence of Sequences and Series 2. Laurent Series 3. Multiplication and Division of power series |
1. Convergence of Sequences and Series 2. Laurent Series 3. Multiplication and Division of power series |
|
||
14 | SERIES | 1. Convergence of Sequences and Series 2. Laurent Series 3. Multiplication and Division of power series |
1. Convergence of Sequences and Series 2. Laurent Series 3. Multiplication and Division of power series |
|
||
15 | RESIDUES AND POLES | 1. Residue Theorems 2. Residues at Poles 3. |
1. Residue Theorems 2. Residues at Poles 3. |
|
||
16 | RESIDUES AND POLES | 1. Residue Theorems 2. Residues at Poles 3. |
1. Residue Theorems 2. Residues at Poles 3. |
|
||
17 | APPLICATIONS OF RESIDUES | 1. Evaluation of Improper Integrals 2. Indented Paths 3. Inverse Laplace Transforms |
1. Evaluation of Improper Integrals 2. Indented Paths 3. Inverse Laplace Transforms |
|
||
18 | 期末考 | 期末考 | 期末考 |
|
教學要點概述: |