課程大綱 Syllabus |
學生學習目標 Learning Objectives |
單元學習活動 Learning Activities |
學習成效評量 Evaluation |
備註 Notes |
序 No. | 單元主題 Unit topic |
內容綱要 Content summary |
1 | Neural network 簡介: |
歷史及Perceptron model |
了解類神經系統定義基礎 |
上機實習 講授 個案研究
|
|
Case study |
2 | Adline/madline model 及Widraw-Hoff Learning |
基礎/理論課程授課及Tenserflow及keras入手 |
1. basic learning algorithms
2. tensorflow 及 Keras 入手 |
上機實習 講授 實作
|
|
第一個實驗之(a): 華氏對攝氏溫度之轉換 (a): 熟習 Anaconda |
3 | Adline/madline及Backpagation Learning Rule |
1)Widrow learning
2)Multi-layer Perceptron
3) Backpagation Learning Rule |
Neural network= architecture + learning rule |
上機實習 講授
|
|
第一個實驗之(a): 華氏對攝氏溫度之轉換: 程式試RUN及修改 |
4 | introduction to backprogation |
BP Architecture and learning Rule |
Architcture and learning rule |
上機實習 演講
|
|
從acitvation function: signmiodal 到 Rectifier Linear Unit 到 L到RELU對學習的影響 |
5 | Complexity of machine learning |
Optimizer and Loss function for machine learning |
The complexity of learning and related performance index |
討論 講授
|
|
第一個實驗之(b)): 華氏對攝氏溫度之轉換以MLP+BP方式實現 |
6 | Introduction to Autoencoder(AE) |
1.Autoencoder= Encoder + Decoder without Supervision
2. PCA Vs. Autoencoder
3. Laternal space |
AE' s adavantage and Bottleneck |
上機實習 演講
|
|
實驗二以自編碼器(AE)實現MNIST資料庫手寫數字之資料降維 |
7 | Variational Autoencoder (VAE) |
1) 4 disadvantages of AE
2) VariationalAE
3) Crossentropy Vs. KL Diveregence
4) Random generator |
Combined learnig algorithm of VAE: Reconstruction loss + KL divergence |
上機實習 講授
|
|
|
8 | Midterm |
Midterm |
Midterm |
|
|
|
9 | comparison of AE., VAE. and PCA |
Difference among AE, VAE and PCA |
Difference among AE VAE and PCA; and their poential usage |
討論 講授 個案研究
|
|
case study |
10 | Convolutional Neural network(CNN) |
1. Simple sensor makes contribution to visual intellengence.
2. CNN architecture
3. Examples demo. |
Architecture and learning rule of CNN |
上機實習 講授 個案研究
|
|
實驗三 以變分自編碼器(VAE)實現 MNIST資料降維分析與產生測試 |
11 | Feedback NN |
1) RNN
2) LSTM
3)GRU |
1) Learning through BPTT
2) Gradient Varnished |
上機實習 講授 個案研究
|
|
|
12 | Support vector machine |
Margin/support vector |
1) Margin/support vector
2) Linear programing |
上機實習 講授 個案研究
|
|
實驗四 以LSTM自動生成音樂 |
13 | Generator and Adversarial Neural Network(GAN) |
Architecture and learning rule of GAN |
1) Loss function of Generator and that of Adverial network
2) Convergence?
3) Improvement Tech. |
上機實習 講授 個案研究
|
|
|
14 | reinforcement learning |
reinforcement learning (RL) |
1) Basic RL theorem and applications
2)Markov decision Processs
3)Deep RL |
上機實習 講授 個案研究
|
|
|
15 | Introduction to transformer |
1) basics of Transformer
2) encoder decoder stucture
3) Chat-GPT |
1) basics of Transformer
2) encoder decoder stucture
3) Chat-GPT |
上機實習 講授 個案研究
|
|
期末實驗: A small version Chat-GPT |
16 | Final exam |
final exam |
final exam |
|
|
|
17 | 彈性教學 Final project competion |
A small version of Chat-GPT |
練習以現有開源之 組件, 發展一 小型 Chat-GPT |
實作
|
|
10% |
18 | 彈性教學 Final project competion |
presentation and demo of self-developed small-version Chat-GPT |
presentation and demo of self-developed small-version Chat-GPT |
實作 心得發表
|
|
total 10% |