| 課程大綱 Syllabus | 學生學習目標 Learning Objectives
 | 單元學習活動 Learning Activities
 | 學習成效評量 Evaluation
 | 備註 Notes
 | 
			
			| 序 No.
 | 單元主題 Unit topic
 | 內容綱要 Content summary
 | 
					
				| 1 | Neural network 簡介 | 1.神經網路歷史 2.神經網路數位模式: P erceptron model
 | 對神經網路的模式: 輸入之加權, 輸出及加權調整有概念 |  |  |  | 
					
				| 2 | Adline/madline model 及Widraw-Hoff Learning | 1. 學習法則之基礎/理論課程授課 2 Tenserflow及keras入手
 | 1. basic learning algorithms 2. tensorflow 及 Keras 安裝入手
 |  |  | 第一個實驗之(a): 攝氏對華氏溫度之轉換 (a): 熟習 Anaconda | 
					
				| 3 | Adline/madline及Backpagation Learning Rule | 1)Widrow learning 2)Multi-layer Perceptron
 3) Backpagation Learning Rule
 | Neural network= architecture + learning rule |  |  | 第一個實驗之(a):攝氏對華氏溫度之轉換: 程式試RUN及修改 | 
					
				| 4 | introduction to backprogation | BP Architecture and learning Rule | Architcture and learning rule |  |  |  | 
					
				| 5 | Complexity of machine learning | Optimizer and Loss function for machine learning | The complexity of learning and related performance index |  |  | 第一個實驗之(b)): 攝氏對華氏溫度之轉換以MLP+BP方式實現 | 
					
				| 6 | Introduction to Autoencoder(AE) | 1.Autoencoder= Encoder + Decoder without Supervision 2. PCA Vs. Autoencoder
 3. Laternal space
 | AE' s adavantage and Bottleneck |  |  | 實驗二以自編碼器(AE)實現MNIST資料庫手寫數字之資料降維 | 
					
				| 7 | Variational Autoencoder (VAE) | 1) 4 disadvantages of AE 2) VariationalAE
 3) Crossentropy Vs. KL Diveregence
 4) Random generator
 | AE 's basic and learning algorithm |  |  | 模擬期中考 | 
					
				| 8 | AE. VAE. and PCA | Difference between AE VAE and PCA | Difference between AE VAE and PCA |  |  |  | 
					
				| 9 | Midterm exam | Midterm	exam | Midterm Exam |  |  |  | 
					
				| 10 | Convolutional Neural network | 1. Simple sensor makes contribution to visual intellengence. 2. CNN architecture
 3. Examples .
 | Architecture and learning rule of CNN |  |  | 實驗三 以變分自編碼器(VAE)實現 MNIST資料降維分析與產生測試 | 
					
				| 11 | Feedback NN | 1) RNN 2) LSTM
 | The architecture and Learning rule of RNN and LSTM |  |  | Final Project proposal | 
					
				| 12 | Support vector machine | Margin/support vector | Margin/support vector |  |  | 實驗四 以LSTM自動生成音樂 | 
					
				| 13 | Generative and Adversarial Neural Network(GAN) | architecture and learning rule of GAN | architecture and learning rule of GAN |  |  |  | 
					
				| 14 | Reinforcement learning(RL) | 1.reinforcement learning 2. Q learning
 3. TD Q learning
 4. Deep Reinforcement Learning
 | basic theorem of RL and applications |  |  | 實驗五: Q learning | 
					
				| 15 | Transformer | basis and architecture | basis and architecture |  |  |  | 
					
				| 16 | Restricted Boltzman Machine | 1. RBM architecture 2. Learning rule
 | RBM learning rule and architecture |  |  |  | 
					
				| 17 | Report on Final project | Report final project | project present |  |  |  | 
					
				| 18 | Final Exam | Final Exam | Final Exam |  |  |  |