課程大綱 Syllabus |
學生學習目標 Learning Objectives |
單元學習活動 Learning Activities |
學習成效評量 Evaluation |
備註 Notes |
序 No. | 單元主題 Unit topic |
內容綱要 Content summary |
1 | Introduction |
The concept of optimal systems control |
控制系統的數學模式介紹 |
|
|
|
2 | Calculus of extrema |
Extrema of functions with equality constraints |
一般函數的數學極值的演算法 |
|
|
|
3 | Calculus of extrema |
Nonlinear programming |
藉由非線性規劃去求得函數的極值。 |
|
|
|
4 | Variational calculus and continuous optimal control |
Dynamic optimization without constraints; transversality conditions |
建立最佳橫切條件,並決定最佳解的數學式。 |
|
|
|
5 | Variational calculus and continuous optimal control |
Sufficient conditions for extrema; Euler-Lagrange equations |
練習最佳充分條件的推導能力。 |
|
|
|
6 | Variational calculus and continuous optimal control |
A variational approach; dynamic optimization with equality constraints. |
利用變分法求得系統具有等式限制的最佳解。 |
|
|
|
7 | Variational calculus and continuous optimal control |
Dynamic optimization with inequality constraints |
在系統具有不等式限制時,利用所學的基礎去求得最佳答案。 |
|
|
|
8 | 期中考 |
期中考 |
期中考 |
|
|
|
9 | The maximum principal |
The variational approach for functions with terminal times not fixed |
利用變分法去求得具有端點不固定的函數之極值。 |
|
|
|
10 | The maximum principal |
The Bolza problem-no inequality constraints |
解決具有等式限制的波拉問題。 |
|
|
|
11 | The maximum principal |
The Bolza problem- inequality constraints |
解決具有不等式限制的波拉問題。 |
|
|
|
12 | Optimum systems control examples |
The linear regulator |
分析線性調節器的最佳控制條件。 |
|
|
|
13 | Optimum systems control examples |
The linear servomechanism |
解決線性伺服器的最佳控制條件。 |
|
|
|
14 | Optimum systems control examples |
Bang-bang control and minimum time problems |
解決最小時間的最佳控制問題。 |
|
|
|
15 | Discrete variational calculus |
Derivation of the discrete Euler-Lagrange equations |
練習離散尤拉方程式的推導條件。 |
|
|
|
16 | 期末考 |
期末考 |
期末考 |
|
|
|