課程名稱Course Title (中文) 微積分(一) (英文) Calculus 開課單位Departments 機械與材料工程學系 課程代碼Course No. G1011K 授課教師Instructor 吳臺一 學分數Credit 3.0 必/選修core required/optional 必修 開課年級Level 大一 先修科目或先備能力(Course Pre-requisites)：高中數學 課程概述與目標(Course Overview and Goals)：(1)訓練學生能從本課程中學習並熟練基礎數學的觀念及其運用，建立良好的數學基礎，作為日後進一步學習的根基。 (2)指導學生學習將工程的基本概念建立數學模式並作分析。 教科書(Textbook) Larson, Hostetler, and Edwards, Essential Calculus: Early Transcendental Functions, 4thd Houghton Mifflin Company, 2018 參考教材(Reference) 1. Thomas, Weir, Hass, and Giordano, Thomas' Calculus: Early Transcendentals, 11th ed., Addison-Wesley, 2005. 2. Salas, Hille, and Etgen, Calculus: One and Several Variables, 9th ed., Wiley, 2003.
 課程大綱 Syllabus 學生學習目標Learning Objectives 單元學習活動Learning Activities 學習成效評量Evaluation 備註Notes 序No. 單元主題Unit topic 內容綱要Content summary 1 Limits and Their Properties I 1.Linear Models and Rates of Change 2.Functions and Their Graphs 3.Inverse Functions 4.Exponential and Logarithmic Functions 1. 了解何謂函數及反函數 2. 了解指數函數及對數函數之定義、圖形及其相關性質 2 Limits and Their Properties II 1. Finding Limits Graphically and Numerically 2. Evaluating Limits Analytically 3. Continuity and One-Sided Limits 4. Infinite Limits 1. 了解各種求極限之方法 2. 了解函數之連續性意義 3. 了解單邊極限及無窮極限之意義及求法 3 Differentiation I 1. The Derivative and the Tangent Line Problem 2. Basic Differentiation Rules and Rate of Change 3. Product and Quotient Rules and Higher-Order Derivatives 3. Derivatives of Inverse Functions 1. 了解導函數之意義 2. 掌握基本的微分方法及技巧 3. 了解微分在變化率上的應用 4. 熟練積函數及商函數之微分方法 5. 了解高階導函數之定義 4 Differentiation II 1. Chain Rule 2. Implicit Differentiation 1. 了解並熟練微分的鏈鎖規則 2. 學會隱函數微分方法 5 Differentiation III 1.Derivatives of Inverse Functions 2.Related Rates 1. 學會反函數的微方法則 2. 了解相關變率的意義及其應用方法 6 Applications of Differentiation I 1. Extrema on an Interval 2. Rolle's Theorem and the Mean Value Theorem 3. Increasing and Decreasing Functions and the First Derivative Test 1. 了解函數之極值的意義 2. 了解Rolle's Theorem 及 Mean Value Theorem 3. 了解一階導函數測試法並能運用於函數極值之尋找 7 Applications of Differentiation II 1. Concavity and the Second Derivative Test 2. Limits at Infinity 1. 了解函數凹向性之意義並能用二階導函數測試法來判斷函數之凹向性 2. 了解在無窮遠處函數之極限求法及其在坐標平面上之幾何意義 8 期中考 檢視學生於期中考前所學之學習成效 對於函數/極限/微分及其應用，都能了解其涵意並能確實回答試題問題。 9 Applications of Differentiation III 1. Optimization Problems and Differentials 2. Differentials 1. 學會利用微分來解決最佳化問題 2. 了解微分算子之意義及其如何應用 10 Iintegration I 1. Antiderivatives and indefinite integration 2. Area 1. 了解反導函數及不定積分的意義 2. 了解積分與面積間的關係 11 Iintegration II 1. Riemann Sums and Definite integrals 2. Fundamental Theorem of Calculus 1. 能了解黎曼和與定積分間的關聯 2. 能解決常見定積分問題 3. 能理解微積分基本定理並了解其應用 12 Iintegration III 1. Integration by Substitution 2. The Natural Logarithmic Function: Integration 1. 能學會以替代法來解決積分問題 2. 能以自然對數函數來解決倒數函數積分問題 13 Iintegration IV 1. Inverse Trigonometric Function: Integration 2. Hyperbolic Functions 1. 能學會以反三角函數來解決積分問題 2. 了解Hyperbolic Functions之意義及其如何微分、積分 14 Applications of Integration I 1. Area of a Region Between Two Curves 2. Volume: The Disk Method 1. 了解如何以積分來計算兩曲線間所圍面積 2. 了解如何以圓盤法來計算旋轉體之體積 15 Applications of Integration II 1. Volume: The Shell Method 2. Arc Length and Surfaces of Revolution 1. 了解如何以剝殼法來計算旋轉體之體積 2. 了解如何以積分來計算曲線弧長及旋轉體之表面積 16 期末考 檢視學生於期中考後至期末考前所學之學習成效 對於常見積分技巧能熟練應用 17 Applications of Integration III 1. Integration by Parts 2. Trigonometric Integrals 1. 了解並能活用分部積分法之技巧 2. 了解如何解決常見三角函數之積分問題 18 Applications of Integration IV 1. Trigonometric Substitution 2. Partial Fractions 1. 了解三角替代法之使用時機及計算技巧 2. 了解部分分式法之使用時機及計算技巧

 序No. 實施期間Period 實施方式Content 教學說明Teaching instructions 彈性教學評量方式Evaluation 備註Notes 1 起:2024-12-30 迄:2025-01-12 2.非同步線上課程 Asynchronous online course Applications of Integration III &IV 10%，遠距考試

 教學要點概述： 1.自編教材 Handout by Instructor： ■ 1-1.簡報 Slids ■ 1-2.影音教材 Videos □ 1-3.教具 Teaching Aids ■ 1-4.教科書 Textbook □ 1-5.其他 Other □ 2.自編評量工具/量表 Educational Assessment ■ 3.教科書作者提供 Textbook 成績考核 Performance Evaluation： 期末考：30%   期中考：30%   彈性教學：10%   平時考：15%   作業：15%   教學資源(Teaching Resources)： □ 教材電子檔(Soft Copy of the Handout or the Textbook) □ 課程網站(Website) 教學相關配合事項：本課程設有每週至少一小時之演練，演練時間由教學助理另行安排，演練評量（包括出缺勤，作業，測驗等）併入學期總成績內。 課程網站(Website)：http://webhd1.ttu.edu.tw/ 扣考規定：https://curri.ttu.edu.tw/p/412-1033-1254.php