教學大綱表 (112學年度 第2學期)
請遵守智慧財產權,勿使用非法影印教科書,避免觸法。
課程名稱
Course Title
(中文) 深度神經網路實驗
(英文) Deep Neural Network Experiments
開課單位
Departments
資訊工程學系
課程代碼
Course No.
I3940
授課教師
Instructor
謝禎冏
學分數
Credit
2.0 必/選修
core required/optional
選修 開課年級
Level
大四
先修科目或先備能力(Course Pre-requisites):Computer Programming, Image Processing
課程概述與目標(Course Overview and Goals):Deep learning, a branch of machine learning, is the fastest-growing field in artificial intelligence. Deep learning mimics how human neural networks work. This course will teach common deep learning architectures, such as Multilayer Perceptron (Multilayer Perceptron), Deep Neural Network DNN (Deep Neural Network), Convolutional Neural Network CNN (Convolutional Neural Network), Recurrent Neural Network RNN ​​(Recurrent Neural Network). The goal is to enable students to apply deep learning in visual recognition, speech recognition, natural language processing, biomedicine, and other fields and achieve good results. This course is one of the EMI courses taught in English.
教科書(Textbook) Self-created material
參考教材(Reference) International Journals, Conferences, Python, Tensorflow/Keras, Yolo Websites.
課程大綱 Syllabus 學生學習目標
Learning Objectives
單元學習活動
Learning Activities
學習成效評量
Evaluation
備註
Notes

No.
單元主題
Unit topic
內容綱要
Content summary
1 Inroduction of Deep Learning Classic NN Ex. 1 Sony Neural Network Console(NNC) by logistic regression  
2 Convolution Convolution NN Ex. 2 LeNet, Mnist 0-9  
3 Deeper Learning Deeper learning Ex. 3 AlexNet, Cifar-10/100 (Sony/getcifar10.py)  
4 Data Set Prepare Dataset Ex. 4 Self-made hand gesture dataset(OpenCV)  
5 A Real World Application Hand gesture recognition Sony NNC / NNL+OpenCV  
6 Environment Setup Install CUDA 10.0, cndnn 10.0, Python, Anaconda, Tensorflow, Keras Mnist 0-9 and real-time hand gesture recognition  
7 Image Annotation Tool Labelling tool ImageLabelling/https://github.com/AlexeyAB/Yolo_mark  
8 VGG VGG, Cifar-100/ResNet Facial expression recognition  
9 InceptionNet InceptionNet ImageNet  
10 Object Detection DNN Fast/Faster RCNN Faster RCNN  
11 Yolo Yolo v7~v9 Keras + Yolov8  
12 Mask RCNN Mask RCNN Mask RCNN  
13 Natural Language Processing I Natural language processing Positive/Negative comments classification  
14 Natural Language processing II Natural language processing News classification  
15 LSTM RNN to LSTM LSTM  
16 GAN Image generation Image generation  
17 Final Exam Final Exam Final Exam  
彈性教學週活動規劃

No.
實施期間
Period
實施方式
Content
教學說明
Teaching instructions
彈性教學評量方式
Evaluation
備註
Notes
1 起:2024-06-11 迄:2024-06-21 5.小專題 Project Final term project: 1. Define a topic 2. Collect dataset 3. Train a deep-learning model 4. Deploy the trained model for real-world applications. Demo the system and report PPT.


教學要點概述:
1.自編教材 Handout by Instructor:
■ 1-1.簡報 Slids
□ 1-2.影音教材 Videos
□ 1-3.教具 Teaching Aids
□ 1-4.教科書 Textbook
□ 1-5.其他 Other
□ 2.自編評量工具/量表 Educational Assessment
□ 3.教科書作者提供 Textbook

成績考核 Performance Evaluation: 期末考:30%   期中考:30%   專題:10%   彈性教學:10%   作業:20%  

教學資源(Teaching Resources):
□ 教材電子檔(Soft Copy of the Handout or the Textbook)
■ 課程網站(Website)
教學相關配合事項:實驗需在電腦教室進行
課程網站(Website):TronClass
扣考規定:https://curri.ttu.edu.tw/p/412-1033-1254.php