課程大綱 Syllabus |
學生學習目標 Learning Objectives |
單元學習活動 Learning Activities |
學習成效評量 Evaluation |
備註 Notes |
序 No. | 單元主題 Unit topic |
內容綱要 Content summary |
1 | Python Programming (1) |
1. Background
2. Variables, expressions, and statements
3. Conditional execution
4. Anaconda, Jupyter Notebook, google colab |
1. Programming background
2. Variables, expressions, and statements
3. Conditional execution
4. Anaconda, Jupyter Notebook, google colab |
|
|
|
2 | Python Programming (2) |
1. Functions
2. Iteration
3. Strings |
1. Functions
2. Iteration
3. Strings |
|
|
|
3 | Python Programming (3) |
1. Files
2. Lists
3. Dictionaries |
1. Files
2. Lists
3. Dictionaries |
|
|
|
4 | Python Programming (4) |
1. Tuples
2. Regular Expressions |
1. Tuples
2. Regular Expressions |
|
|
|
5 | NumPy |
1. NumPy |
1. NumPy |
|
|
|
6 | NumPy, Pandas |
1. Numpy
2. Pandas |
1. Numpy
2. Pandas |
|
|
|
7 | Pandas, Matplotlib |
1. Pandas
2. Matplotlib |
1. Pandas
2. Matplotlib |
|
|
|
8 | Building A Logistic Regression in Python (1) |
1. Introduction to Logistic Regression
2. Problem Description and Datasets
3. Data exploration
4. Visualizations |
Building A Logistic Regression in Python
1. Introduction to Logistic Regression
2. Problem Description and Datasets
3. Data exploration
4. Visualizations |
|
|
|
9 | 期中考週 |
期中考試 |
期中考試 |
|
|
|
10 | Building A Logistic Regression in Python (2) |
5. Create dummy variables
6. Over-sampling using SMOTE
7. Recursive Feature Elimination
8. Implementing the model |
5. Create dummy variables
6. Over-sampling using SMOTE
7. Recursive Feature Elimination
8. Implementing the model |
|
|
|