課程大綱 Syllabus |
學生學習目標 Learning Objectives |
單元學習活動 Learning Activities |
學習成效評量 Evaluation |
備註 Notes |
序 No. | 單元主題 Unit topic |
內容綱要 Content summary |
1 | Neural network 簡介及應用: |
1. 機器學習, 神經網路之沿起歷史.
2. 機器學習之重要運用 |
了解類神經系統重要 |
|
|
從機器學習到深度學習的介紹 |
2 | Adline/madline model 及Widraw-Hoff Learning |
基礎/理論課程授課及Tenserflow及keras入手 |
1. basic learning algorithms
2. tensorflow 及 Keras 安裝入手 |
|
|
第一個實驗之(a): 華氏對攝氏溫度之轉換 (a): 熟習 Anaconda |
3 | Adline/madline及Backpagation Learning Rule |
1)Widrow learning
2)Multi-layer Perceptron
3) Backpagation Learning Rule |
Neural network= architecture + learning rule |
|
|
第一個實驗之(a): 華氏對攝氏溫度之轉換: 程式試RUN及修改 |
4 | introduction to backprogation |
BP Architecture and learning Rule |
Architcture and learning rule |
|
|
|
5 | Complexity of machine learning |
Optimizer and Loss function for machine learning |
The complexity of learning and related performance index |
|
|
第一個實驗之(b)): 華氏對攝氏溫度之轉換以MLP+BP方式實現 |
6 | Introduction to Autoencoder(AE) |
1.Autoencoder= Encoder + Decoder without Supervision
2. PCA Vs. Autoencoder
3. Laternal space |
AE' s adavantage and Bottleneck |
|
|
實驗二以自編碼器(AE)實現MNIST資料庫手寫數字之資料降維 |
7 | Variational Autoencoder (VAE) |
1) 4 disadvantages of AE
2) VariationalAE
3) Crossentropy Vs. KL Diveregence
4) Random generator |
Improve learnig algorithm and Architecture of BP |
|
|
模擬期中考 |
8 | Midterm |
Midterm |
Midterm |
|
|
|
9 | AE. VAE. PCA |
Difference between AE VAE and PCA |
Difference between AE VAE and PCA |
|
|
|
10 | Convolutional Neural network |
1. Simple sensor makes contribution to visual intellengence.
2. CNN architecture
3. Examples demo. |
Architecture and learning rule of CNN |
|
|
實驗三 以變分自編碼器(VAE)實現 MNIST資料降維分析與產生測試 |
11 | Feedback NN |
1) RNN
2) LSTM |
The architecture and Learning rule of RNN and LSTM |
|
|
Final Project proposal |
12 | Support vector machine |
Margin/support vector |
Margin/support vector |
|
|
實驗四 以LSTM自動生成音樂 |
13 | Generator and Adversarial Neural Network(GAN) |
architecture and learning rule of GAN |
architecture and learning rule of GAN |
|
|
|
14 | Reinforcement learning |
1.reinforcement learning
2. Q learning
3. TD Q learning
4. Deep Reinforcement Learning |
basic theorem and applications |
|
|
|
15 | Transformer |
basic and architecture |
basic and architecture |
|
|
|
16 | Final exam |
final exam |
final exam |
|
|
|
17 | 彈性教學 Final project competion |
Final project competion |
Final project competion |
|
|
彈性教學 |
18 | 彈性教學:Reinforcement Learning Project |
熟習 open-AI Gym |
建立Flappy Bird遊戲 |
|
|
彈性教學 |