教學大綱表 (114學年度 第1學期)
請遵守智慧財產權,勿使用非法影印教科書,避免觸法。
課程名稱
Course Title
(中文) (清大)資料探勘與應用
(英文) Data Mining: Concepts, Techniques, And Applications
開課單位
Departments
資訊經營研究所
課程代碼
Course No.
U2920
授課教師
Instructor
胡志堅
學分數
Credit
3.0 必/選修
core required/optional
選修 開課年級
Level
研究所
先修科目或先備能力(Course Pre-requisites):研究所開放大三(含)以上選課; 授課語言: 英文; 建議學生需已修過Python程式設計、有基本機率概念 · 本課程期末專題採分組開發,請審慎評估可投入的時間在選課,若需退選最 晚須於第十週以前退選,以避免影響同組修課同學之權益。
課程概述與目標(Course Overview and Goals):AI主導課程一:資料探勘與應用(Data Mining : Concepts, Techniques, and Applications)
課程基本資料
開設學校:清華大學
開授教師:陳宜欣老師

Data mining serves as a crucial field that leverages advanced algorithms to reveal hidden, yet invaluable insights buried within extensive datasets. These algorithms are drawn from a multitude of areas such as machine learning, artificial intelligence, pattern recognition, statistics, and database systems, working together to facilitate a deeper understanding and analysis of data.
This course is designed to equip you with the foundational knowledge and hands-on experience needed to delve into the expansive world of data mining. Whether you are looking to enhance your skill set or embark on a new career path, this course will serve as a stepping stone to achieving your goals. The curriculum encompasses a range of topics that will introduce you to the core concepts and
techniques prevalent in the field of data mining. These include:
· Association Rules: Understand the principles behind identifying rules that highlight relationships between seemingly independent data in a database.
· Clustering: Learn about grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups.
· Classification: Gain knowledge on the procedures for identifying the predefined class of a new observation.
· Text Mining: Equip yourself with the skills needed to analyze and interpret large collections of text data to extract meaningful information.
· Data Mining Applications: Explore the various practical applications of data mining across different industries and sectors.
教科書(Textbook) 課程網頁:https://www.cs.nthu.edu.tw/~yishin/courses/ISA5810/ISA5810-
2025.html
參考教材(Reference) Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining,
Addison Wesley
課程大綱 Syllabus 學生學習目標
Learning Objectives
單元學習活動
Learning Activities
學習成效評量
Evaluation
備註
Notes

No.
單元主題
Unit topic
內容綱要
Content summary
1 1-Sep Introduction Introduction 演講
 
2 8-Sep Overview and Data Overview and Data 講授
 
3 15-Sep Overview and Data Overview and Data 討論
講授
 
4 15-Sep Lab For Data Exploration And Management (Make up for

Mid-Autumn Festival)
Lab For Data Exploration And Management (Make up for

Mid-Autumn Festival)
討論
設計研究
講授
 
5 22-Sep Classification Classification 講授
 
6 29-Sep Classification Classification 講授
 
7 6-Oct Mid-Autumn Festival Mid-Autumn Festival 討論
講授
報告
 
8 13-Oct Text Mining & Project Progress Report Text Mining & Project Progress Report 講授
 
9 20-Oct Lab 2 Lab 2 講授
 
10 27-Oct Text Mining Text Mining 講授
 
11 3-Nov Text Mining Text Mining 講授
 
12 10-Nov DM Clustering DM Clustering 講授
 
13 17-Nov DM Clustering & Project Progress Report DM Clustering & Project Progress Report 講授
 
14 24-Nov Association Association 講授
 
15 1-Dec Student Paper Presentation(同時段同步報告) Student Paper Presentation(同時段同步報告) 討論
講授
心得發表
專題
 
16 8-Dec Final Exam Final Exam 講授
期末考
 
17 15-Dec Final Demo Presentation Final Demo Presentation 講授
實作
心得發表
報告
專題
 


教學要點概述:
1.自編教材 Handout by Instructor:
□ 1-1.簡報 Slids
□ 1-2.影音教材 Videos
□ 1-3.教具 Teaching Aids
□ 1-4.教科書 Textbook
■ 1-5.其他 Other
□ 2.自編評量工具/量表 Educational Assessment
□ 3.教科書作者提供 Textbook

成績考核 Performance Evaluation: 期末考:35%   其他評量:10%   專題:25%   報告:10%   作業:20%  

教學資源(Teaching Resources):
□ 教材電子檔(Soft Copy of the Handout or the Textbook)
■ 課程網站(Website)
教學相關配合事項:On-line class
課程網站(Website):課程網頁:https://www.cs.nthu.edu.tw/~yishin/courses/ISA5810/ISA5
扣考規定:https://curri.ttu.edu.tw/p/412-1033-1254.php