課程大綱 Syllabus |
學生學習目標 Learning Objectives |
單元學習活動 Learning Activities |
學習成效評量 Evaluation |
備註 Notes |
序 No. | 單元主題 Unit topic |
內容綱要 Content summary |
1 | Introduction to big data marketing(大數據行銷概述) |
Course overview and grading criteria(課程規劃介紹與評分標準說明) |
Introduction to big data marketing(了解大數據行銷的基本概念) |
講授
|
|
|
2 | Get ready for big data marketing(為大數據行銷做好準備) |
1.Why is marketing antiquated
2.Data hairball
3.The characteristics of big data
4.The definition of big data marketing
1.為何市場行銷過時
2.數據毛球
3.大數據特性
4.大數據行銷意涵 |
Understanding the characteristics of big data and the definition of big data marketing(了解大數據特性、大數據行銷等相關定義) |
講授
|
|
|
3 | The five steps to data-driven marketing and big data insights(數據驅動型行銷5個步驟)I |
1.Get smart, get strategic
2.Tear down the silos
3.untangle the data hairball
1.建置策略性戰略
2.打破隔閡
3.解開數據毛球 |
Understanding the five steps to data-driven marketing and big data insights(了解數據驅動型行銷5個步驟 ) |
講授
|
|
|
4 | The five steps to data-driven marketing and big data insights(數據驅動型行銷5個步驟)II |
1.make metrics your mantra
2.process is the new black
1.指標至上
2.流程當道 |
Understanding the five steps to data-driven marketing and big data insights(了解數據驅動型行銷5個步驟 ) |
講授
|
|
|
5 | Applications of generative AI in big data marketing(生成式AI於大數據行銷之應用) |
1.Applications of generative AI in Big Data Marketing
2.Technical Framework of Generative AI
3.Advantages of Generative AI
4.Challenges and Risks
1.生成式AI在大數據行銷的應用
2.生成式AI技術框架
3.生成式人工智慧的優勢
4.挑戰與風險 |
Understanding the applications of generative AI in Big Data Marketing(了解生成式AI於大數據行銷之應用 ) |
講授
|
|
|
6 | Applications of generative AI in big data marketing(生成式AI於大數據行銷之應用) |
1.Success Stories
2.Future Trends
1.成功案例
2.未來趨勢 |
Understanding the applications of generative AI in Big Data Marketing(了解生成式AI於大數據行銷之應用) |
講授
|
|
|
7 | Midterm Exam (期中考) |
Midterm Exam (期中考) |
Midterm Exam (期中考) |
|
期中考
|
|
8 | Introduction to Python(Python程式設計基礎) |
1.Introduction to Anaconda
2.Introduction to Google Colaboratory (Colab)
1.介紹Anaconda
2.介紹Google Colaboratory |
Introduction to Python software(介紹Python軟體) |
上機實習 講授
|
|
|
9 | Introduction to PythonI(Python程式設計基礎) |
1.Variables
2.Output function
3.Input function
4.Data types
5.Operators
1.變數
2.輸出函數
3.輸入函數
4.資料類別
5.運算元 |
Introduction to Python(了解Python程式設計基礎) |
上機實習 講授
|
作業
|
|
10 | Introduction to PythonII(Python程式設計基礎) |
1.List
2.Conditional judgement
1.序列
2.條件判斷 |
Introduction to Python(了解Python程式設計基礎) |
上機實習 講授
|
作業
|
|
11 | Introduction to PythonIII(Python程式設計基礎) |
1.Pandas
1.Pandas資料處理函式 |
Introduction to Python(了解Python程式設計基礎) |
上機實習 講授
|
作業
|
|
12 | Introduction to PythonIV(Python程式設計基礎) |
1.File processing
1.檔案處理 |
Introduction to Python(了解Python程式設計基礎) |
上機實習 講授
|
作業
|
|
13 | Using Python to regression analysis(Python應用-迴歸分析) |
Using Python to regression analysis(Python應用-迴歸分析) |
Using Python to regression analysis(Python應用-迴歸分析) |
上機實習 講授
|
作業
|
|
14 | Using Python to classification analysis(Python應用-分類分析) |
Using Python to classification analysis(Python應用-分類分析) |
Using Python to classification analysis(Python應用-分類分析) |
上機實習 講授
|
作業
|
|
15 | Using Python to time series analysis(Python應用-時間序列分析) |
Using Python to time series analysis(Python應用-時間序列分析) |
Using Python to time series analysis(Python應用-時間序列分析) |
上機實習 講授
|
作業
|
|
16 | Final Exam (期末考) |
Final Exam (期末考) |
Final Exam (期末考) |
|
期末考
|
|
17 | Introduction to applications of big data marketing (大數據行銷之應用介紹) |
Introduction to applications of big data marketing (大數據行銷之應用介紹) |
Introduction to applications of big data marketing (大數據行銷之應用介紹) |
媒體教學
|
彈性教學
|
|
18 | Introduction to applications of big data marketing (大數據行銷之應用介紹) |
Introduction to applications of big data marketing (大數據行銷之應用介紹) |
Introduction to applications of big data marketing (大數據行銷之應用介紹) |
媒體教學
|
彈性教學
|
|